Design of Liquid Crystal Based Tunable Reflectarray Antenna Using Slot Embedded Patch Element Configurations

نویسندگان

  • M. Y. Ismail
  • M. Inam
چکیده

This paper presents the design and analysis of Liquid Crystal (LC) based tunable reflectarray antenna with different design configurations within X-band frequency range. The effect of LC volume used for unit cell element on frequency tunability and reflection loss performance has been investigated. Moreover different slot embedded patch element configurations have been proposed for LC based tunable reflectarray antenna design with enhanced performance. The detailed fabrication and measurement procedure for different LC based unit cells has been presented. The waveguide scattering parameter measured results demonstrated that by using the circular slot embedded patch elements, the frequency tunability and dynamic phase range can be increased from 180MHz to 200MHz and 120° to 124° respectively. Furthermore the circular slot embedded patch element can be designed at 10GHz resonant frequency with a patch volume of 2.71mm as compared to 3.47mm required for rectangular patch without slot. Keywords—Liquid crystal, Tunable reflectarray, Frequency tunability, Dynamic phase range.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of Material Properties for Tunable Reflectarray Antenna Design

The emerging field of communications has increased the demand of electronically tunable reflectarray antennas. Substrate material properties play at1 important role in the design of reflectamy antennas. Variable permittivity materials such as liquid crystals and fenoelectrics have received great deal of attention due to their non-linear material properties. A comparative analysis behveen the pr...

متن کامل

Development of A Compact and Low Profile ‎Cavity Backed Slot Antenna Using Microstrip ‎Gap Waveguide Technology

Proof of concept of a cavity backed slot antenna based on inverted microstrip gap ‎waveguide (IMGW) technology is presented. Since the antenna is operating based on the ‎first resonating mode of the cavity, it is more compact compared to the ordinary cavity ‎backed slot antennas in which the second cavity mode is used for radiation. Furthermore, ‎the proposed antenna element introduces lower lo...

متن کامل

CPW-Fed Circularly Polarized Slot ANTENNA with Elliptical-Shaped Patch for UWB Applications

A new design of coplanar waveguide (CPW)-fed antenna with circular polarization (CP) and excellent impedance matching is presented. In this design a pair of circular-shaped slits is applied to opposite corners of the slot for enhancing the impedance matching and realizes bandwidth of 134.43% across 2.98-15.20 GHz for VSWR≤2. Furthermore this structure exhibits axial ration bandwidth (ARBW) of 3...

متن کامل

Single-Layer Dual-Band Dual-Linear-Polarization Reflectarray Antenna with Different Beams for Each Band

A novel single-layer unit cell structure is proposed to design a dual-band dual-linearpolarization reflectarray antenna with different beams for X and Ku bands. The unit cell structure is composed of a circular ring and two cross bow-tie structures combined by a circular patch. Five tunable geometric parameters can be optimized to achieve the required phase distributions of the reflectarray ant...

متن کامل

Multi Attribute Analysis of a Novel Compact UWB Antenna with Via-fed Elements for Dual Band Notch Function (RESEARCH NOTE)

A compact microstrip-fed antenna with dual notched bands is proposed. First, a simple basic configuration is presented for Ultra Wide Band (UWB) applications and then the dual band notched structure is extended from the UWB one. The basic structure of the UWB antenna consists of a simple square radiating patch and a ground plane with a wide square slot on back of the substrate. A semi-circle sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014